The Price of Inclusion: Evidence from Housing Developer Behavior

Evan Soltas

July 2022

Inclusionary Housing 101

- Mandate or incentive (subsidy, zoning rights, etc.) for mixed-income housing
- Developers reserve share of units for low-income HHs at below-market rent
 - E.g.: 20% of units for 25-year exemption of building from property taxation
- Policy motive: social integration
 - Typical IH unit is in a higher-income neighborhood vs. other housing programs
- Core economic issue of voluntary IH: developer participation constraint
 - Developers only participate if profitable
 - But government wants most/best units at minimum fiscal cost

IH in the 100 Most Populous U.S. Municipalities in 2020

This Paper

How cost-effective is voluntary inclusionary housing (421-a) in New York City?

3 contributions:

1 Develop and estimate microeconometric model of housing developer behavior

2 Use estimates to analyze the supply and marginal fiscal cost of inclusionary units

3 Explain cost differences versus LIHTC and Section 8, and estimate MVPF of 421-a

Summary of Results

1 421-a is very costly on the margin

- Citywide average marginal fiscal cost per inclusionary unit: **\$1.6 million**
- Average fiscal cost is **3x** more than LIHTC & Section 8 units in NYC

2 High costs reflect fundamental policy trade-off between cost and quality

- 421-a's cost premium versus LIHTC & Section 8 mostly explained by neighborhood
- High developer breakevens, not high incidence on developer profit
- **3** 421-a is an "opportunity bargain" in some areas but is not cost-effective in others
 - Neighborhood-specific MVPFs of 421-a range from zero to infinity
 - Variation in costs and benefits both important to MVPF variation

Prior Literature

• Housing supply responses to tax subsidies, especially LIHTC

Susin (2002), Sinai & Waldfogel (2005), Gibbons & Manning (2006), Baum-Snow & Marion (2009), Eriksen & Rosenthal (2010)

• Existing policy evaluation literature of IZ: city-level diff-in-diffs

Powell & Stringham (2004), Bento et al. (2009), Mukhija et al. (2010), Schuetz et al. (2011), Hamilton (2019)

• Much recent work in housing policies aimed at inclusion and desegregation

Chyn (2016), Collinson & Ganong (2018), Bergman et al. (2019), Diamond & McQuade (2019), Diamond et al. (2019), Favilukis et al. (2019), van Dijk (2019)

• Estimating regulatory compliance costs via revealed preference

Pitt & Slemrod (1989), Anderson & Sallee (2011), Kisin & Manela (2016), Cullen & Mansur (2017), Benzarti (forthcoming), Einav et al. (2020)

Overview

1 Policy Background

2 Model

3 Data and Estimation

4 Results

5 Cost-Effectiveness Evaluation

Overview

1 Policy Background

2 Model

3 Data and Estimation

4 Results

5 Cost-Effectiveness Evaluation

Policy Mechanics of 421-a

Property tax exemption primarily for buildings with onsite inclusionary units

- \$1.6B in tax expenditure in FY 2019 (15% of relevant tax base)
- 4.6 percent of all eligible new residential units are income-restricted due to 421-a

A developer plans to build an apartment building. Do they participate in 421-a?

- If accept: Must reserve 20% of units, but get tax exemption
 - Below-market rent set by government
 - Regulated tenant selection: income-restricted, sometimes other conditions
 - Tenants in unreserved units: Business as usual
- If decline: Business as usual free to choose rents and tenants for all units

Housing Supply At Center of IH Policy Debate

421-a forfeits billions of dollars in public money for minimal public benefit in return ... a windfall for real estate developers, with little return for communities.

- Association for Neighborhood and Housing Development

Ultimately, however, MIH reflects a fundamental failure to recognize that inclusionary housing is always voluntary. No development occurs without the expectation of a threshold rate of return on investment.

- Eric Kober (former senior official, NYC Department of City Planning)

Measurement of 421-a Tax Incentive

421-a incentive is the present discounted value of tax savings as a share of building value:

$$\Delta \tau_i = \frac{\mathsf{PDV}_{i,0}}{V_{i,0}} = \mathrm{E}_0 \left[\sum_{s=0}^{\infty} \frac{\tau_{i,s}^0 - \tau_{i,s}^1}{(1+\rho)^s} \right]$$

 $\tau_{i,s}^1$ and $\tau_{i,s}^0$ = building *i*'s tax rate in year *s* if it respectively accepts or rejects 421-a.

ightarrow Obtain from newly-built microsimulation model of NYC property tax code

Ideal measure of incentive: Δ profits between accepting and next best alternative

- 1 Restrict developers' price expectations
- 2 Restrict their choice set: Only accept or reject 421-a, no other margins

 \rightarrow Will later try to convince you that #2 is not an egregious oversimplification

Sources of Variation in 421-a Tax Incentive

Policy reforms:

- GEA Expansion: Region of NYC ("GEA") w/ different tax regime expands in 2007
- **"As-Of-Right" Curtailment**: In "NPP" regions of NYC until 2008, buildings 421-a eligible even w/o inclusionary units \rightarrow tax subsidy eliminated or capped

Idiosyncratic variation in assessment:

- Assessment Growth Caps: assessed-value growth cannot exceed caps, which vary by building type, binding for some buildings but not others
- **Condo Underassessment**: DOF uses biased estimates of condo market values, as required under law to benchmark condos against rentals

Supply Responses to Two Changes in 421-a Incentives

Overview

1 Policy Background

2 Model

3 Data and Estimation

4 Results

5 Cost-Effectiveness Evaluation

Model Preliminaries

- The developer of a building *i* maximizes profit π_i . Two considerations:
 - PDV of tax savings
 - PDV of foregone rental income
- Sole decision is over 421-a participation: No intensive margin or rent-setting power
 - Binding zoning rules mean construction is essentially predetermined
 - In appendix: Model w/ monopolistic competition & intensive margin

Developer's Problem

Developer *i* takes up 421-a if it is profitable to do so:

$$D_i = \mathbf{1}[\Delta \pi_i \geq \mathbf{0}]$$

Take-up condition: Value of tax savings must exceed foregone rental income

$$\Delta \tau_i \geq \lambda \mu_i + (\mathbf{1} - \lambda) \delta_i$$

- $\Delta \tau_i$: 421-a tax incentive, expressed in p.p. of building's market value
- $\lambda \in [0, 1]$: Inclusionary share of units
- μ_i : Log diff in rent, market-rate units versus inclusionary units
- δ_i : Log diff in rent on market-rate units, due to presence of inclusionary units

Overview

1 Policy Background

2 Model

3 Data and Estimation

4 Results

5 Cost-Effectiveness Evaluation

Data

Observe all 421-a eligible multifamily residential construction, 2003–2015, in NYC:

- Property Tax Assessments (DOF)
 - Scraped and digitized raw PDF tax assessments of all new construction \rightarrow administrative codes that record inclusionary housing provision
- Land-Use Records (DCP)
 - Detailed information on zoning, lot characteristics, land value
- Building Permits (DOB)
 - Key filing date for 421-a eligibility as well as identity of developer
- Neighborhood Characteristics (2010 Census / 2013-2017 ACS)
 - Census block & block-group data on poverty rate, HH income, composition by race/ethnicity/education/age, commuting mode shares, vacancy rate, etc.

ASSESSMENT ROLL 2016-2017		
City of New York		
Taxable Status Date: January 5, 2016		
Parcel Information		
Owner Name 110 CORONA LLC	Borough: Block: Lot:	Queens 2011 36
Property Address and Zip Code 11017 CORONA AVENUE 11368	Tax Class:	2
Real Estate Billing Name and Address 110 CORONA LLC	Building Class:	D1
FLUSHING NY 11368		
Land Information		
Lot Size	Irregular	Corner
72.37 FT X 112.44 FT	IRREG	
Building Information	ing Cive Eutennie	n Starlag
1 44.00 FT	x 50.00 FT	5.00
		0100
Assessment Information		
Description	Land	Tota
ESTIMATED MARKET VALUE		1,708.000
ACTUAL AV	224,550	768,60
ACTUAL EX AV	209,171	753,22
TRANS AV	224,550	580,050
TRANS EX AV	209,171	564,67
Taxable/Billable Assessed Value		
SUBJECT TO ADJUSTMENTS, YOUR 2016/17	TAXES WILL BE BASED ON	15.37
	HOLD THE DE DAGED ON	10,011
Exemption Information		
Code Description		Exempt Value
• 5114-01 (48800) 421A (25 YR NOT CAP	2	753,22

ASSESSMENT RO City of New York	LL 2016-2017			
Taxable Status Date:	January 5, 2016			
Parcel Information				
Owner Name 110 CORONA LLC		Borough: Block: Lot:	Queens 2011 36	
Property Address and 11017 CORONA AVEN Real Estate Billing Na 110 CORONA LLC 110-17 COR ONA AVE FLUSHING NY 112	I Zip Code IUE 11368 Ime and Address INUE 368	Tax Class: Building Class:	2 D1	
Land Information Lot : 72.37 FT x Building Information	Sizo 112.44 FT	Irregular IRREG	Corner	
Number of Building: 1	Exemption	Informati	on	
Assessment Informat	Co	de	Descript	ion
ESTIMATED MARKET ACTUAL AV ACTUAL EX AV TRANS AV TRANS EX AV	• 5114-01 (4	48800)	421A (2	5 YR NOT CAP
Taxable/Billable Asse SUBJECT TO ADJUSTM	ENTS, YOU	DE BASED ON	15,379	
Exemption Information Code • 5114-01 (48800) 4	Sectiption 21A (25 YR NOT CAP		Exempt Value 753,221	

	421-a	LIHTC	Tenant-Based Section 8	Project-Based Section 8	Public Housing	All Rental Units
Panel A: Building-Level Char	acteristics					
% Social Units in Building	19.3	89.3	n.a.	94.0	100.0	n.a.
Panel B: Block-Level Charact	teristics					
Med. HH. Income	\$100,043	\$42,223	\$41,187	\$36,899	\$23,420	\$63,093
Med. Monthly Rent	\$2,163	\$1,128	\$1,189	\$964	\$553	\$1,452
% Poor	17.0	31.4	26.4	33.0	43.7	21.2
% Less than HS	10.8	25.7	26.3	27.6	34.2	19.8
% HS Graduate	13.8	24.9	27.3	25.1	30.9	23.0
% Some College	14.4	23.0	22.2	20.4	22.0	19.5
% College Graduate	33.5	16.7	15.3	17.3	9.4	22.1
% More than College	27.6	9.7	8.9	9.7	3.4	15.7
% Non-Hispanic White	44.8	13.0	19.4	17.7	4.9	32.9
% Non-Hispanic Black	16.9	40.5	30.9	32.0	42.8	23.0
% Hispanic	37.6	40.9	41.6	43.8	47.7	30.6
% Asian	14.6	5.1	5.8	5.9	4.4	11.6
Median Age	33.9	33.0	32.8	39.0	33.8	35.8
% Renters	83.8	90.8	83.3	91.1	97.7	78.6

Does the Building Provide Onsite Inclusionary Housing?

	Yes		No		
	Mean	Std. Dev.	Mean	Std. Dev.	
Estimated Market Value (\$ Millions)					
Total	84.12	274.80	16.48	117.41	
Land	9.82	39.41	2.05	20.05	
Building	74.30	241.91	14.43	101.28	
Total Per Unit	0.536	1.524	0.557	1.498	
Tax Rate (p.p.)					
Level	0.31	0.32	0.47	0.81	
Size of 421-a Incentive	32.95	28.23	4.74	13.07	
Present Value of Tax Savings (\$)					
Total	16,107,285	40,975,046	1,238,956	8,486,184	
Per Inclusionary Unit	443,782	549,262	126,610	523,299	
Number of Units					
Total	105.89	178.21	19.95	85.74	
Residential	102.23	175.66	17.48	69.45	
Number of Buildings	5	581		11,565	
Number of Units	59,	59,393		202,179	

Estimation

Difference in profits between providing on-site inclusionary units and not:

$$\Delta \log \pi_i = \Delta au_i + x_i eta + \Delta e_i$$

- $\Delta \tau_i$: Building-specific estimate of 421-a tax incentive
- $x_i\beta$: Lot/neighborhood observables to explain variation in rent foregone
- Δe_i : Unobservable shocks to rent foregone / 421-a participation costs

Assume e_i is distributed Type I Extreme Value with dispersion parameter σ :

$$\Pr(D_i = 1 | x_i) = \frac{\exp[(\Delta \tau_i + x_i \beta) / \sigma]}{1 + \exp[(\Delta \tau_i + x_i \beta) / \sigma]}$$

Next: Define and estimate objects of interest from $\hat{\sigma}$ and $\hat{\beta}$

Overview

1 Policy Background

2 Model

3 Data and Estimation

4 Results

5 Cost-Effectiveness Evaluation

Do Developers Respond to the 421-a Incentive?

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Fixed Effects:	None	Borough			Neighborhood Tabulation Area		
Controls:	None	None	Lot	Lot & Block	None	Lot	Lot & Block
421-a Incentive	4.92***	5.18***	5.58***	5.99***	5.20***	5.87***	6.02***
	(0.30)	(0.54)	(0.64)	(0.69)	(0.65)	(0.76)	(0.74)
N	11,669	11,669	11,647	11,640	7,465	7,450	7,445
Clusters	179	179	179	179	82	82	82
Marginal Effect	0.18***	0.18***	0.19***	0.19***	0.26***	0.26***	0.26***
	(0.02)	(0.03)	(0.04)	(0.04)	(0.03)	(0.03)	(0.03)
Std. Dev. of Δe_i	0.368***	0.350***	0.325***	0.303***	0.349***	0.309***	0.301***
	(0.023)	(0.036)	(0.038)	(0.035)	(0.044)	(0.040)	(0.037)

 \rightarrow Not meaningful as elasticity. Instead, implies little unexplained dispersion in $\Delta \log \pi_i$

Endogenous Construction

Problem: Developers may respond to 421-a on margins beyond accept vs. reject

 \rightarrow Will tend to inflate $\Delta \tau_i$ among participants versus nonparticipants

Solution: Simulated instruments approach (Currie & Gruber 1996)

- 1 Identify similar lots to lot *i* on predetermined dimensions
- 2 On those lots, record buildings' characteristics and tax exemptions
- 3 Simulate tax consequences of each such building if it were instead on *i*'s lot
- 4 Take average of counterfactual buildings' 421-a savings

Computing and Using the Simulated Instrument

Simulated instrument:

$$\widetilde{\Delta au_i} = rac{1}{|\mathcal{F}_i|} \sum_{j \in \mathcal{F}_i} \Delta au(b_j, x_i)$$

- \mathcal{F}_i : Set of similar lots to *i* (same borough, same zoning class, \pm 20% of *i*'s lot area)
- $\Delta \tau(b_i, x_i)$: 421-a savings if *j*'s building were instead on lot *i*

Moment conditions:

$$E\left[\left\{D_i-\Lambda\left(\frac{\Delta\tau_i+x_i\beta}{\sigma}\right)\right\}z_i\right]=0$$

• $z_i = (x_i, \widetilde{\Delta \tau_i})$: Treat all other lot/neighborhood characteristics as exogenous

• $\Lambda(\cdot)$: Logit function

'Zeroth' and First Stages of Simulated Instrument

Regressions

Estimating Developer Breakevens

What is the minimum amount a developer would accept for an inclusionary unit?

First, find the incentive $\Delta \tau_i^*(x_i)$ at which developer *i* is just indifferent in expectation:

$$egin{aligned} E[\Delta\log\pi_i|x_i] &= \Delta au_i + x_i\widehateta = \mathbf{0} \ &\implies \Delta au_i^*(x_i) = -x_i\widehateta \end{aligned}$$

Then, to obtain breakeven per inclusionary unit, rescale:

$$\mathsf{FC}_i = -(\mathbf{v}_i/\lambda) \cdot \mathbf{x}_i \widehat{\beta}$$

To government, FC_i is the minimum fiscal cost per unit in building *i*.

Histogram of Estimated Developer Breakevens, by Take-Up Decision

% of Building Value

Estimated Breakevens Are Strongly Related to Neighborhood Rents

Estimating Supply Responses

How many inclusionary units would be added if the 421-a incentive were increased?

$$\int \frac{\partial \Pr(D_i = 1|x_i)}{\partial (\Delta \tau_i)} dF_n(x_i) = \frac{1}{\sigma} \int \Pr(D_i = 1|x_i) \left[1 - \Pr(D_i = 1|x_i)\right] dF_n(x_i)$$

- σ : Dispersion of T1EV unobservable shocks
- $F_n(x_i)$: Distribution of unit characteristics x_i in neighborhood n
- $Pr(D_i = 1 | x_i)$: Conditional probability of 421-a participation
- ightarrow Supply response depends upon both observable and unobservable heterogeneity

Supply Response by Neighborhood Tabulation Area

Estimating Average Marginal Fiscal Costs

How much does it cost NYC to get another inclusionary unit in neighborhood *n*?

$$\mathsf{MFC}_n = \frac{1}{\lambda} \int \frac{\partial [v_i \Delta \tau_i \operatorname{Pr}(D_i = 1 | x_i)]}{\partial (\Delta \tau_i)} \, dF_n(x_i) \Big/ \int \frac{\partial \operatorname{Pr}(D_i = 1 | x_i)}{\partial (\Delta \tau_i)} \, dF_n(x_i)$$

• $v_i \Delta \tau_i \Pr(D_i = 1 | x_i)$: Expected 421-a tax expenditure on building *i*

Marginal Fiscal Cost by Neighborhood Tabulation Area

Overview

1 Policy Background

2 Model

3 Data and Estimation

4 Results

6 Cost-Effectiveness Evaluation
Evaluating the Comparative Cost-Effectiveness of 421-a

Average fiscal cost per unit of 421-a, versus Section 8 and LIHTC:

- 421-a: \$652K (std. err. \$76K)
- Section 8: \$246K
- LIHTC: \$220K

Why is 421-a so costly? Decomposing into "between" and "within" factors:

- **Between**: 421-a units are in costlier neighborhoods \rightarrow higher developer breakevens
- Within: Differences in admin cost, building amenities, developer incidence
- \rightarrow Implement decomposition following DiNardo Fortin Lemieux (1996)

Do Differences in Neighborhoods Explain 421-a's Cost Premium?

- y_i: Neighborhood characteristic of unit *i* (e.g., % college grad, med. HH income)
- f(y), g(y): densities of 421-a and (pooled) Section 8 & LIHTC units

Estimate densities using adaptive kernel, then compute ratio of densities:

 $\psi(\mathbf{y}) = \widehat{f}(\mathbf{y}) / \widehat{g}(\mathbf{y}).$

Use DFL factor $\psi(y)$ to reweight average fiscal cost:

$$\widetilde{\mathsf{AFC}} = \frac{1}{\lambda} \int \frac{\psi(y_i) v_i \Delta \tau_i \operatorname{Pr}(D_i = 1 | x_i)}{\partial (\Delta \tau_i)} \, dF(x_i) \Big/ \int \frac{\psi(y_i) \operatorname{Pr}(D_i = 1 | x_i)}{\partial (\Delta \tau_i)} \, dF(x_i)$$

ightarrow Cost of 421-a in counterfactual w/ neighborhood allocation of Section 8 & LIHTC

Neighborhoods Explain Most of 421-a Cost Premium

Incidence on Developers

What share of the fiscal cost of 421-a ends up as developer profits?

Use the Small and Rosen (1981) log-sum-exp formula for consumer surplus:

$$\frac{E[\Delta \log \pi_i \mid D_i = 1]}{E[\Delta \tau_i \mid D_i = 1]} = \frac{\sigma \int \log \left[1 + \exp\left(\frac{\Delta \tau_i + x_i \beta}{\sigma}\right)\right] dF_n(x_i \mid D_i = 1)}{\int \Delta \tau_i dF_n(x_i \mid D_i = 1)}$$

Result: Developers capture 46% of 421-a exemption

- Similar to incidence of Section 8 (Collinson and Ganong 2018)
- Compare to incidence-minimizing policy with same participation: 36% to developers

Is the "Price of Inclusion" Worth Paying?

Weigh costs of 421-a against benefits: external estimates of neighborhood effects

 $\mathsf{MVPF}_n = \frac{\mathsf{PDV}(\mathsf{Breakeven}_n) + \mathsf{PDV}(\mathsf{After-Tax}\ \mathsf{Income}_n)}{\mathsf{PDV}(\mathsf{Marginal}\ \mathsf{Fiscal}\ \mathsf{Cost}_n) - \mathsf{PDV}(\mathsf{Fiscal}\ \mathsf{Externality}_n)}$

- WTP and program cost: Estimated breakevens and marginal fiscal costs
- Extrapolate impacts of 421-a from Opportunity Atlas, as in Bergman et al. (2020)
- Build MVPF calculator of 421-a from Hendren & Sprung-Keyser (2020) code base
- Predict "sender" NTAs by distance and pop. of renter HHs earning \$30K-\$60K

Is the "Price of Inclusion" Worth Paying?

Weigh costs of 421-a against benefits: external estimates of neighborhood effects

 $\mathsf{MVPF}_n = \frac{\mathsf{PDV}(\mathsf{Breakeven}_n) + \mathsf{PDV}(\mathsf{After-Tax}\ \mathsf{Income}_n)}{\mathsf{PDV}(\mathsf{Marginal}\ \mathsf{Fiscal}\ \mathsf{Cost}_n) - \mathsf{PDV}(\mathsf{Fiscal}\ \mathsf{Externality}_n)}$

- WTP and program cost: Estimated breakevens and marginal fiscal costs
- Extrapolate impacts of 421-a from Opportunity Atlas, as in Bergman et al. (2020)
- Build MVPF calculator of 421-a from Hendren & Sprung-Keyser (2020) code base
- Predict "sender" NTAs by distance and pop. of renter HHs earning \$30K-\$60K

Is the "Price of Inclusion" Worth Paying?

Evaluate 421-a by its marginal value of public funds (Hendren & Sprung-Keyser 2020):

 $\mathsf{MVPF}_n = \frac{\mathsf{PDV}(\mathsf{Breakeven}_n) + \mathsf{PDV}(\mathsf{After-Tax}\ \mathsf{Income}_n)}{\mathsf{PDV}(\mathsf{Marginal}\ \mathsf{Fiscal}\ \mathsf{Cost}_n) - \mathsf{PDV}(\mathsf{Fiscal}\ \mathsf{Externality}_n)}$

- WTP and program cost: Estimated breakevens and marginal fiscal costs
- Extrapolate impacts of 421-a from Opportunity Atlas, as in Bergman et al. (2020)
- Build MVPF calculator of 421-a from Hendren & Sprung-Keyser (2020) code base
- Predict "sender" NTAs by distance and pop. of renter HHs earning \$30K-\$60K

MVPF of 421-a by Neighborhood Tabulation Area (Lower WTP)

Conclusion

Hallmark of U.S. housing policy since 1970s: implementation via private sector

- Landlord acceptance of Section 8 vouchers, developer take-up of LIHTC, ...
- First paper to study supply-side facing any housing policy using microdata

I apply my microeconometric framework to study NYC's 421-a program

- Inclusionary housing: urban policy of rising importance, yet almost no evidence
- Develop methods to estimate supply and marginal fiscal cost of inclusionary units
- Account for cost premium: DFL decomposition, incidence analysis, MVPF calculation

Thank you for attending!

esoltas@mit.edu

Additional Slides

IH in the 100 Most Populous U.S. Municipalities in 2000

Smaller Policy Details For Which I Account

- Mixed-Use Buildings: Rescale τ_i by min{1.12 s_i, 1} to account for penalty for use of 421-a to subsidize commercial development beyond threshold
- Liberty Zone: additional incentives for inclusionary development as part of 9/11 recovery package for downtown Manhattan, 2002–2007
- Inclusionary Housing Program (R10 and Designated Areas): additional incentives for inclusionary development in R10 zoning districts and DAs, which are mostly up-zoned neighborhoods (applies only after rezoning)

Lot Controls from Land-Use Data

- Assessed value of land
- Lot area, dimensions (frontage x depth), area, and type (e.g., corner lot)
- Zoning district (e.g., R8) and historic district indicator

Model Estimates from Simulated Instrument GMM Approach

	(1)	(2)	(3)	(4)		
	None		Borough Fixed Effects			
_	No Controls	No Controls	Lot Controls	Lot & Block Controls		
421-a Incentive	5.419***	6.506***	5.525***	6.588***		
	(0.384)	(0.986)	(1.009)	(1.060)		
N	11,460	11,460	11,448	11,445		
Clusters	178	178	178	178		
Std. Dev. of <i>e</i> _i	0.335***	0.279***	0.328***	0.296***		
	(0.024)	(0.042)	(0.060)	(0.053)		

	Exogenous Construction	Endogenous Construction
Supply Response	0.59*** (0.07)	0.60*** (0.10)
Marginal Fiscal Cost	\$1,593,037*** (326,216)	\$1,568,194*** (423,196)
Average Fiscal Cost	\$651,974*** (75,525)	\$650,714*** (76,108)

Data Sources by Housing Program

- LIHTC: National LIHTC Database, May 2019 release (HUD)
- Tenant-Based Section 8: Picture of Subsidized Households database (HUD)
- **Project-Based Section 8**: Database of active multifamily housing contracts as of March 2020 (Office of Multifamily Housing Programs, FHA, HUD)
- Public Housing: 2020 NYCHA Development Data Book

Developer Profit Share of Incidence

MVPF Calculation Details

My MVPF code build directly upon the Hendren & Sprung-Keyser (2020) modules for:

- MTO: Chetty et al. (2016)
- Chicago housing vouchers: Jacob et al. (2015)

I adapt these modules in several ways to my context:

- Use NYC-specific intergen. income rank-rank function: Friedman et al. (2018)
- Use NYC-specific earnings lifecycle: 2015 ACS microdata
- Use NYC-specific MTR on labor income: NBER TAXSIM and NYC local PIT rate
- Match characteristics of 421-a or NYC Section 8 households
- Predict mobility effects using Opportunity Atlas (Bergman et al., 2020)

MVPF Calculation Details

WTP for housing assumptions:

- High WTP: Value every \$1 in breakeven as \$1 transfer to household
- Low WTP: Value \$1 in breakeven as \$1 for inframarginal spending, \$0 above counterfactual spending, using NYC housing expenditure distribution among HHs w/ incomes from \$30K to \$60K (2015 ACS)

Migration model:

- Restrict population to low-income renter households
- Calibrate move distance coefficient to match mean distance in Bergman et al. (2020)

Fiscal externalities:

- Effects on earnings / college subsidies (from Hendren & Spung-Keyser, 2020)
- Add NTA-specific displacement from Section 8 & LIHTC

MVPF of 421-a by Neighborhood Tabulation Area (Higher WTP)

Tracing the Citywide Supply Curve

How would the 421-a take-up rate change under a nonmarginal change in incentives?

$$\mathcal{S}(\Delta \tau) = \int \Pr(D_i = 1 \mid x_i, \Delta \tau) \, dF(x_i).$$

Implementation details:

- Make $\Delta \tau$ common across buildings, vary together
- Simultaneous (sup-t) bootstrap confidence bands as in Chernozhukov et al. (2013)

'Laffer Curve' for Inclusionary Units

How does the number of inclusionary units respond to a rise in the required share λ ?

- Get more units from inframarginal buildings
- But buildings on the margin exit 421-a
- $\rightarrow\,$ Ambiguous b/c of opposite-signed mechanical and behavioral effects

Number of inclusionary units:

$$I_n(\lambda; \{\Delta \tau_i\}) = \lambda \int \Pr(D_i = 1 \mid x_i, \lambda, \Delta \tau) \, dF_n(x_i).$$

Problem: No λ variation in data, need functional form assumption

$$\delta_i = \min\left\{\frac{\lambda}{1-\lambda}\delta_0(\mathbf{x}_i), \, \mu(\mathbf{x}_i)
ight\} \implies \frac{\Delta \tau}{\lambda} \ge (\mu + \delta_0)(\mathbf{x}_i)$$

Duration of 421-a Tax Incentive, in Years

Years	Location	Inclusionary Housing		
		None	Off-Site	On-Site
1985-2006	Manhattan GEA	0	10	20
	Manhattan non-GEA, South of 110th Street	10	10	20
	Neighborhood Preservation Program Areas	20	20	20
	All Other Areas	15	15	25
2006-2008	Manhattan GEA	0	10	20
	Manhattan non-GEA, South of 110th Street	10	10	20
	Greenpoint–Williamsburg GEA	0	15	20
	Neighborhood Preservation Program Areas	20	20	20
	All Other Areas	15	15	25
2008-2016	Expanded GEA	0	0	25
	All Other Areas	15	15	25

Measurement of 421-a Tax Incentive

How NYC (and I) calculate a building's tax liability, in five easy steps:

Concept	Action		
0. True Market Value			
1. Estimated Market Value	Estimate (0)		
2. Actual Assessed Value	Apply assessment ratio to (1)		
3. Transitional Assessed Value	Apply growth caps to (2)		
4. Taxable Value	Apply tax exemptions to (3)		
5. Tax Liability	Apply tax rate, then abatements, to (4)		

 \rightarrow Convert liability sequences $\{\{T_{is}^0\}, \{T_{is}^1\}\}$ to rates $\{\{\tau_{is}^0\}, \{\tau_{is}^1\}\}$, compute diff in PDVs