Self-Targeting in U.S. Transfer Programs

Charlie Rafkin Adam Solomon Evan Soltas

August 2023

Motivation

- Millions of Americans are eligible for means-tested transfers but don't claim them
 - Take-up rates: 65% for SNAP, 60% for Medicaid, 50% for SSI, ...
 - Key distinction between welfare states (U.S. versus Europe)
 - Relevant now: 7 million Medicaid-eligible Americans set to lose their benefits with the end of pandemic-era automatic enrollment, because of non-take-up
- Policy alternative to status quo: send help automatically, not upon application
 - Social benefit of this alternative: eliminate ordeal costs for recipients
 - Social cost: eliminate "self-targeting" via incomplete take-up among the eligible
- This paper: measure and evaluate this trade-off in eight U.S. transfer programs
 - 1 Measurement: How self-targeted is transfer take-up with respect to need?
 - Welfare: Does the social value of self-targeting exceed the social cost of ordeals?

Motivation

Theory: Should transfer programs be voluntary or automatic?

- Advantageous self-targeting = necessary condition for voluntary transfers
- Classic PF viewpoint: ordeals → self-targeting (Nichols & Zeckhauser 1982)
- Counterpoint: ordeals can perversely screen out neediest (Currie & Gahvari 2008)

Empirics: Do ordeals induce advantageous self-targeting on average?

- Mixed literature on ordeals measuring selection on the margin
- Needed for voluntary vs. automatic: selection on average among the eligible
- Why? Automatic transfer also redistributes to voluntary regime's "never-takers"

This Paper

- 1 How much self-targeting in U.S. transfer programs?
 - Self-targeting is advantageous on consumption & lifetime income across 8 transfers
 - Example: Average SNAP recipient consumes \$11,000 less per year (\downarrow 19 percentiles) than average eligible nonrecipient with the same income
 - Automatic versus voluntary: Lowest-consumption HHs receive 50%–75% more under status quo than under budget-neutral automatic program
- Should transfers be voluntary or automatic?
 - Derive sufficient-statistics formulas for nonlinear tax/transfer with self-targeting
 - Social benefit of self-targeting (model-based measure): 6 cents per transfer dollar
 - Social benefit exceeds social cost on average, but nuanced heterogeneity by program
- → Conclusion: self-targeting provides a compelling case for voluntary transfers

Data and Measurement

- Sample: PSID 1997-2019, heads of household & partners (age 18 to 65)
- Current Income / Lifetime Income / Consumption:
 - Equivalize for household size & composition (Citro & Michael 1995)
 - Impute consumption flow from home and car ownership (Meyer & Sullivan 2023)
 - Estimate lifetime income from incomplete panels (Haider & Solon 2006)

Transfers: Receipt for 8 consolidated programs (\$830B expenditure in 2019)

SNAP	Housing Assistance	TANF	LIHEAP
Medicaid	SSI	WIC	School Meals

Eligibility: new, detailed imputation code from state-by-year transfer rules

Empirical Definition of Self-Targeting

A transfer is advantageously self-targeting on an outcome C_i if

$$\underbrace{E\left[C_{i} \mid D_{i} = E_{i} = 1, \boldsymbol{X}_{i}\right]}_{\text{recipient average}} < \underbrace{E\left[C_{i} \mid D_{i} = 0, E_{i} = 1, \boldsymbol{X}_{i}\right]}_{\text{eligible nonrecipient average}}$$

Emerges from "correlation test" framework (Chiappori & Salanié 2000):

Consumption:
$$C_i = \mathbf{X}_i \delta + \alpha D_i + \beta E_i + \nu_i$$

Take-Up: $D_i = \begin{cases} \mathbf{X}_i \gamma + \varepsilon_i & \text{if } E_i = 1 \\ 0 & \text{if } E_i = 0 \end{cases}$

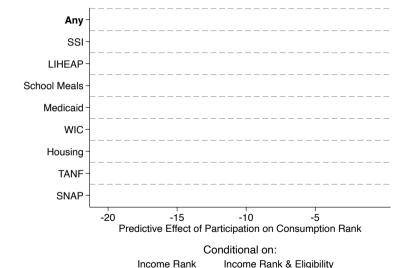
Self-targeting condition: $corr(\nu_i, \varepsilon_i) < 0$

Transfer Dollars Per Capita	Income Quintile							
			1	2	3	4	5	Avg.
Consumption Quintile	1 2 3 4 5							
	Avg.							

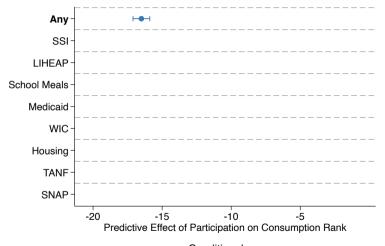
Transfer Dollars Per Capita		Income Quintile					
		1	2	3	4	5	Avg.
Consumption Quintile	1 2 3 4 5	3,647	1,353	600	397	155	2,440
	Avg.						

Transfer Dollars Per Capita							
		1	2	3	4	5	Avg.
	1	3,647	1,353	600	397	155	2,440
	2	1,745					666
Consumption Quintile	3	920					303
	4	572					153
	5	557					101
	Avg.	2,435	844	266	92	27	

Transfer Dollars Per Capita	a	Income Quintile					
		1	2	3	4	5	Avg.
	1	3,647	1,353	600	397	155	2,440
	2	1,745	719	296	134	80	666
Consumption Quintile	3	920	563	217	102	33	303
	4	572	403	168	60	33	153
	5	557	273	133	58	18	101
	Avg.	2,435	844	266	92	27	


SNAP Eligibility Rate			1	ncome Qui	ntile		
		1	2	3	4	5	Avg.
	1						
	2						
Consumption Quintile	3						
	4						
	5						
	Avg.						
SNAP Take-Up Rate			Ir	ncome Quir	ntile		
		1	2	3	4	5	Avg.
	1						
	2						
Consumption Quintile	3						
	4						
	5						
	Avg.						

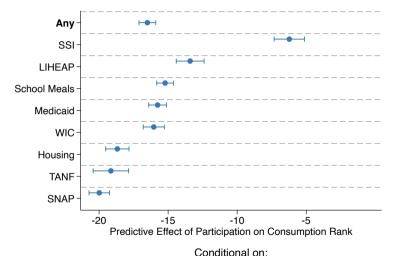
SNAP Eligibility Rate		Income Quintile					
		1	2	3	4	5	Avg.
Consumption Quintile	1 2 3 4 5	83.8	23.7	0.4	0.8	0.0	51.9
	Avg.	76.3	18.1	0.4	0.3	0.1	
SNAP Take-Up Rate			Inc	ome Quint	ile		
		1	2	3	4	5	Avg.
	1						
	2						
Consumption Quintile	3						
	4						
	5						
	Avg.						


SNAP Eligibility Rate			Inco	me Quintil	е		
		1	2	3	4	5	Avg.
	1	83.8	23.7	0.4	0.8	0.0	51.9
	2	75.5					19.0
Consumption Quintile	3	67.5					10.5
	4	61.3					7.2
	5	60.7					6.5
	Avg.	76.3	18.1	0.4	0.3	0.1	
SNAP Take-Up Rate			Inc	ome Quinti	le		
		1	2	3	4	5	Avg.
	1						
	2						
Consumption Quintile	2 3						
Consumption Quintile	_						
Consumption Quintile	3						

SNAP Eligibility Rate			Inco	me Quintil	е		
		1	2	3	4	5	Avg.
	1	83.8	23.7	0.4	0.8	0.0	51.9
	2	75.5					19.0
Consumption Quintile	3	67.5					10.5
	4	61.3					7.2
	5	60.7					6.5
	Avg.	76.3	18.1	0.4	0.3	0.1	
SNAP Take-Up Rate		Income Quintile					
		1	2	3	4	5	Avg.
	1	52.2	39.3			.	50.2
	2	26.8					25.9
Consumption Quintile	3	14.9					14.5
Consumption Quintile	5	- 117					
	4	8.3					8.1
							8.1 8.1

SNAP Eligibility Rate		Income Quintile					
		1	2	3	4	5	Avg.
	1	83.8	23.7	0.4	0.8	0.0	51.9
	2	75.5	15.8	0.4	0.2	0.0	19.0
Consumption Quintile	3	67.5	14.0	0.4	0.2	0.1	10.5
	4	61.3	13.9	0.4	0.3	0.1	7.2
	5	60.7	17.6	0.5	0.3	0.0	6.5
	Avg.	76.3	18.1	0.4	0.3	0.1	
SNAP Take-Up Rate		Income Quintile					
		1	2	3	4	5	Avg.
	1	52.2	39.3		•	.	50.2
	2	26.8	23.7				25.9
Consumption Quintile	3	14.9	14.4				14.5
	4	8.3	8.2				8.1
	5	8.1	8.6				8.1
			27.2				

$$C_{it} = \beta D_{it} + f(Y_{it}) + u_{it}$$

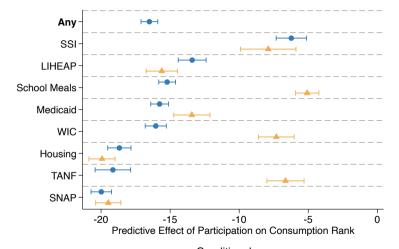

- C_{it} : consumption
- D_{it} : transfer receipt
- Y_{it} : income

Conditional on:

Income Rank

Income Rank & Eligibility

$$C_{it} = \beta D_{it} + f(Y_{it}) + u_{it}$$


- C_{it} : consumption
- D_{it} : transfer receipt
- Y_{it} : income

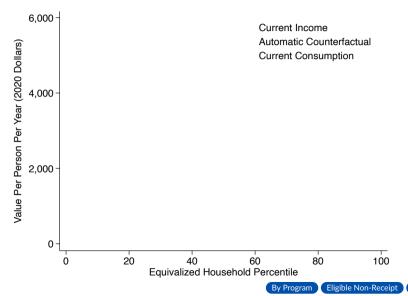
Jonditional on:

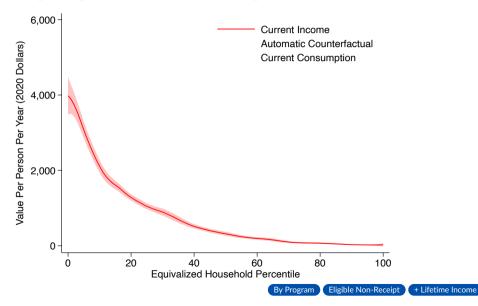
Income Rank

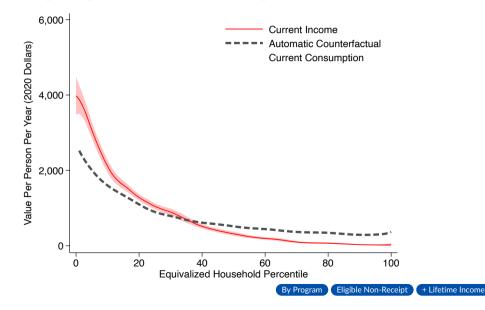
Income Rank & Eligibility

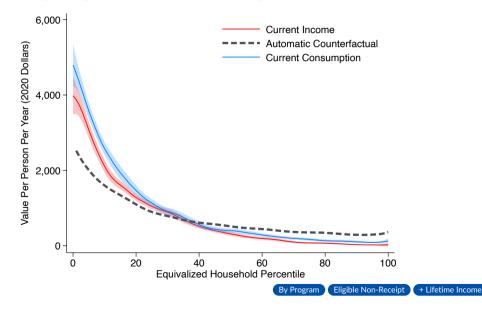
Conditional on:

 Full population:


$$C_{it} = \beta D_{it} + f(Y_{it}) + u_{it}$$


Among eligibles only:


$$C_{it} = {}^{\beta}D_{it} + f(Y_{it}) + u_{it}$$

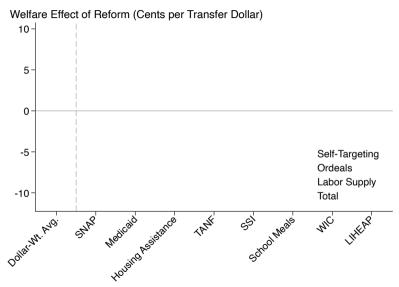

- C_{it} : consumption
- D_{it} : transfer receipt
- Y_{it} : income

Sensitivity to Mismeasurement

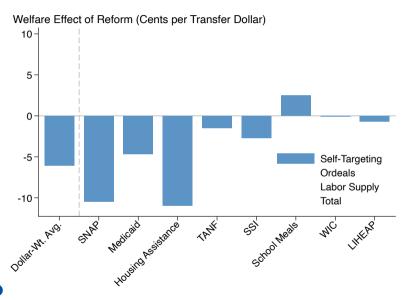
Key threat: survey data quality → address with thorough sensitivity analysis

- Transfer receipt: misreporting corrections raise self-targeting (Mittag 2019)
- Eligibility: Is self-targeting actually unobservable eligibility rules? Probably not
 - Results are robust to reclassifying simulated-ineligible recipients as eligible
 - Find self-targeting even in demographic cells with near-complete eligibility
- Consumption: Advantageous self-targeting of transfers holds for...
 - Ownership of consumer durable goods (Meyer & Sullivan 2012)
 - "Well-measured" consumption sub-categories (Meyer & Sullivan 2023)

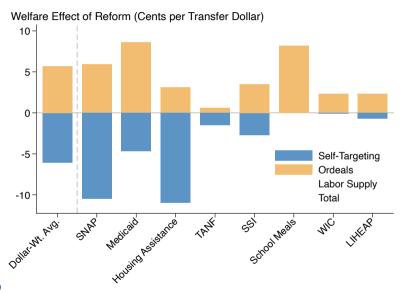
Welfare Analysis: Motivating Example

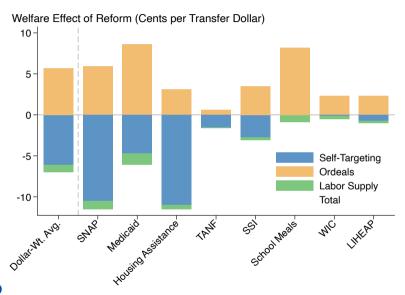

Reform: cut \$1 from a voluntary transfer & split fiscal savings via an automatic transfer

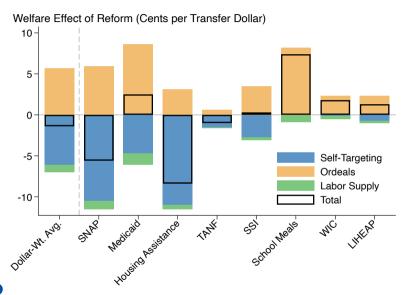
- 100 people: 50 get voluntary transfer (\$B); 49 inframarginal takers, 1 marginal
- Welfare weights: α_{AT} for inframarginals $\geq \alpha_{C}$ for indifferent $\geq \alpha_{NT}$ for non-takers


$$\Delta \textit{W} = \underbrace{49 \times \alpha_{\text{AT}} \times \left(\frac{49 + B}{100} - 1\right)}_{\text{Welfare impact on inframarginal takers}} + \underbrace{50 \times \alpha_{\text{NT}} \times \frac{49 + B}{100}}_{\text{Welfare impact on marginals}} + \underbrace{1 \times \alpha_{\text{C}} \times \frac{49 + B}{100}}_{\text{Welfare impact on marginals}}$$

- \rightarrow Welfare is reduced if $\alpha_{AT} \gg \alpha_{NT}$ (self-targeting benefit) and B is small (ordeal cost)
- → Intuition carries through into optimal nonlinear tax/transfer model →







Conclusion

This paper: Should transfer programs be voluntary or automatic?

- Fundamental question for the design of social safety nets
- Renewed interest amid post-pandemic pullback of transfers in U.S.
- Core trade-off: Social benefit of self-targeting versus social cost of ordeals

Our answer: Benefits of self-targeting likely exceed ordeal costs

- Measurement: Document advantageous self-targeting in eight U.S. transfers
- Welfare: Quantify trade-off using sufficient-statistics approach

Thank you!

{esoltas, crafkin, adamsol}@mit.edu

Measuring Lifetime Income

1 Estimate individual-FE Poisson model of income, initializing $\lambda_a = 1$ for all a:

$$E[y_{it} | X_{it}] = \exp(\alpha_i \lambda_a + X'_{it} \beta_a),$$

- **2** Empirical Bayes shrinkage of α_i following Morris (1983), yielding $\widehat{\alpha}_i^*$
- 3 Outer loop step. Re-estimate the Poisson model, treating individual FEs as data:

$$E[y_{it} \mid X_{it}] = \exp(\widehat{\alpha}_i^* \lambda_a + X_{it}' \beta_a).$$

Iterate on (1)/(2)/(3) until convergence of $\{\widehat{\alpha}_i^*, \widehat{\lambda}_a, \widehat{\beta}_a\}$.

4 Balance the panel via imputation of X_{it} and construct predicted incomes:

$$\widehat{\mathbf{y}}_{it} = \exp(\widehat{\alpha}_i^* \widehat{\lambda}_a + \mathbf{X}_{it}' \widehat{\beta}_a)$$

6 Construct ranks: Lifetime ranks are within birth-year cohort, current ranks are across cohorts within year. Lifetime concept of household income follows each individual through the sequence of households during their adult life.

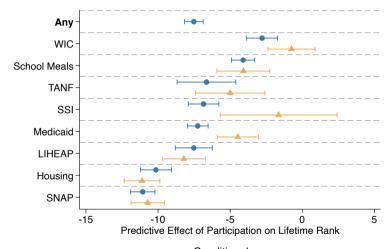
Related Literature

Effects of ordeals & information interventions on transfer take-up

Empirics: Bhargava & Manoli 2015, Alatas et al. 2016, Ganong & Liebman 2018, Deshpande & Li 2019, Finkelstein & Notowidigdo 2019, Gray 2019, Lieber & Lockwood 2019, Homonoff & Somerville 2021, Unrath 2021, Arbogast et al. 2022, Shepard & Wagner 2022, Wu & Meyer 2022, Ericson et al. 2023

Theory: Akerlof 1978, Nichols & Zeckhauser 1982, Blackorby & Donaldson 1988, Besley & Coate 1992, Munro 1992, Kleven & Kopczuk 2011

- → Contribution: measure self-targeting & interpret via model of optimal redistrib.
- Incidence of taxes & transfers: consumption & lifetime perspectives
 - Poterba 1989/1991, Fullerton & Lim Rogers 1993, Blundell et al. 2015, Bengtsson et al. 2016, Roantree & Shaw 2018, Brewer et al. 2020, Levell et al. 2021, Auerbach et al. 2023
 - → Contribution: first systematic analysis for U.S. transfer programs


	(1) Self-Targeting	(2) Upper Bound on Ordeals	(3) Labor-Supply Effects	(4) Total
Dollar-Weighted Avg.	-6.1	5.7	-0.9	-1.4
SNAP	-10.5	5.9	-1.0	-5.6
Medicaid	-4.7	8.6	-1.4	2.5
Housing Assistance	-11.0	3.1	-0.5	-8.4
TANF	-1.5	0.6	-0.1	-1.0
SSI	-2.7	3.5	-0.4	0.3
School Meals	2.5	5.7	-0.9	7.4
WIC	-0.1	2.3	-0.4	1.8
LIHEAP	-0.7	2.3	-0.3	1.3

Welfare Analysis: Sensitivity

	(1) Self-Targeting	(2) Upper Bound on Ordeals	(3) Labor-Supply Effects	(4) Total
Baseline	-6.1	5.7	-0.9	-1.4
Halve SWF curvature	-2.3	5.7	-0.9	2.5
Double SWF curvature	-10.6	5.7	-0.9	-5.8
SWF over lifetime income	-5.8	5.7	-0.9	-1.0
Halve take-up elasticity	-6.1	2.8	-0.9	-4.2
Double take-up elasticity	-6.1	11.4	-0.9	4.3
Halve elasticity of taxable income Double lasticity of taxable income	-6.1 -6.1	5.7 5.7	-0.4 -1.8	-0.9 -2.2

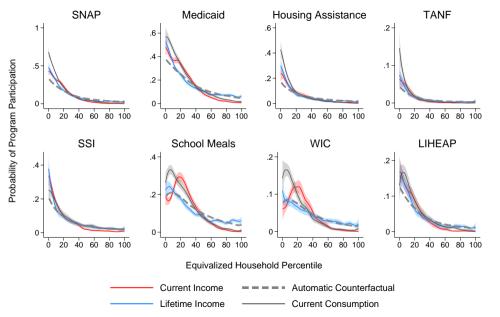
Full population:

$$L_{it} = \beta D_{it} + f(Y_{it}) + u_{it}$$

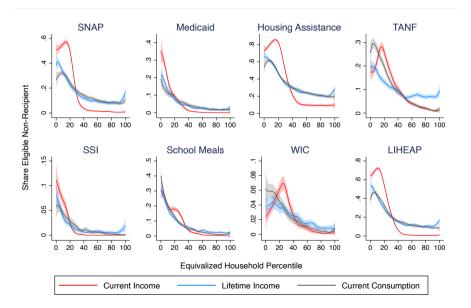
Among eligibles only:

$$L_{it} = {}^{\beta}D_{it} + f(Y_{it}) + u_{it}$$

- L_{it} : lifetime income
- D_{it} : transfer receipt
- *Y_{it}* : current income


Conditional on:

Income Rank


Income Rank & Eligibility

SNAP Receipt Rate							
·		Income Quintile					
		1	2	3	4	5	Avg.
	1	51.2	22.3	7.8	4.9	4.9	35.3
	2	23.7	9.6	2.7	1.1	0.5	8.4
Consumption Quintile	3	12.3	5.9	2.3	0.5	0.3	3.3
	4	6.3	3.4	1.4	0.2	0.2	1.3
	5	5.5	2.9	1.7	0.3	0.1	0.9
	Avg.	33.6	12.2	2.8	0.6	0.2	

Fact 5: Eligible Non-Recipients Have High Consumption

Welfare Analysis: Model Setup

Households:

- Type vector $\theta = (w, \kappa)$: wage w, take-up cost κ . Distributed $\mu(w, \kappa)$
- Face tax schedule T(z), voluntary transfer schedule S(z)
- Problem:

$$V(\theta) = \max_{z} \left\{ z - T(z) - v(z/w) + \int_{0}^{S(z)} (S(z) - \kappa) \mu(w, \kappa) d\kappa \right\}$$

Government problem:

$$\max_{T,S} \int_{\Theta} \alpha(\theta) V(\theta) d\mu(\theta) \quad \text{s.t.} \quad \int_{\Theta} [T(z(\theta)) - 1_{S} S(z(\theta))] = 0$$

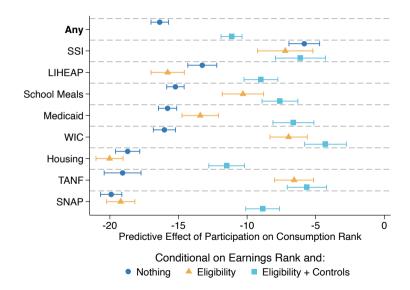
Our focus: government's "allocation" problem between T and S, taking κ as given

- Useful envelope-theorem properties, unlike optimal ordeal (gov't sets κ)
- Aligned with our empirical exercise & cross-program focus

Welfare Analysis: Sufficient Statistics Formula

Welfare impact of reallocating ds from voluntary to automatic transfer:

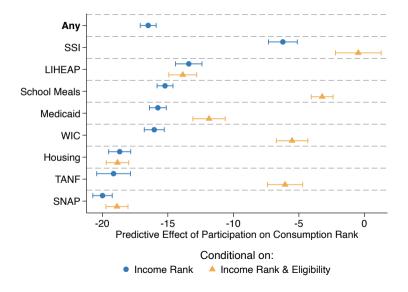
$$dW = \underbrace{ds \int_{Z} M(z) \left(E_{\kappa} \left[\alpha(z, \kappa) \right] - E_{\kappa \leq S(z)} \left[\alpha(z, \kappa) \right] \right) h(z) dz}_{\text{lost social benefit from self-targeting}} + \underbrace{E_{Z}[S(z)] m(z) E_{Z,\kappa} \left[\alpha(z, \kappa) \right]}_{\text{social savings on ordeals}} + \text{labor supply effects}$$


- S(z): value of voluntary transfer at income z
- M(z): voluntary transfer receipt rate at income z (m(z) = dM(z)/dS(z))
- h(z): density of income at z
- $\alpha(z, \kappa)$: social welfare weight at income z and idiosyncratic take-up cost κ

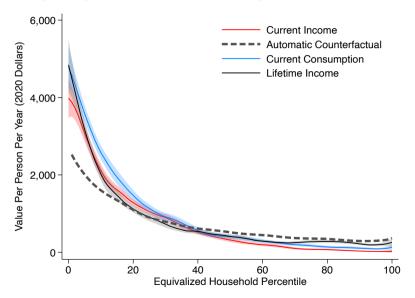
Fact 1b: Transfers Fall in Lifetime Income Given Current Income

		Income Quintile					
		1	2	3	4	5	Avg.
	1	3,346	1,243	498	253	28	2,208
Lifetime Income Quintile	2	1,594	839	278	103	36	627
	3	1,272	664	230	88	36	349
	4	1,152	556	211	79	26	242
	5	1,344	522	189	66	23	239
	Avg.	2,435	844	266	92	27	

$$C_{it} = \beta D_{it} + f(Y_{it}) + u_{it}$$


Back

Misreporting Corrections Amplify Estimates of Self-Targeting


	Ва	seline	Adjusted for Misreporting		
	Consumption (1)	Lifetime Income (2)	Consumption (3)	Lifetime Income (4)	
Panel A: SNAP [Mitt	tag 2019]				
Receives Transfer	-17.6***	-11.1***	-26.4***	-14.3***	
	(0.6)	(0.6)	(8.0)	(0.9)	
Panel B: Medicaid [I	Davern et al. 201	9]			
Receives Transfer	-14.4***	-7.0***	-23.4***	-12.2***	
	(0.5)	(0.5)	(0.7)	(0.8)	

Reclassifying Simulated-Ineligible Recipients

