Overview

What are the welfare consequences of occupational licensing?

- Fundamental gaps in our understanding:
 1. What considerations determine which jobs should be licensed?
 2. What reduced-form estimates are sufficient for welfare analysis?
 3. What are the welfare implications of actual U.S. licensing rules?

- Context: Rising policy attention to licensing and potential reforms
“Too often, policymakers do not carefully weigh costs and benefits when making decisions about whether or how to regulate a profession through licensing.”

– U.S. Council of Economic Advisers, Jul 2015

“[O]verly burdensome licensure requirements weaken competition without benefiting the public.”

– Former U.S. Labor Sec. Alex Acosta, 8 Jan 2018, WSJ
Overview

Welfare consequences of licensing are theoretically ambiguous:

- Costly restriction on labor supply
- Yet there may be countervailing benefits:
 1. *Investment*: Correct underinvestment by offering costly signal
 2. *Selection*: Screen out workers of low unobservable quality
 \[\rightarrow \] Higher consumer WTP for goods produced by licensed workers

Rich environment for testing theory:

- Occupational licensing is a state issue in U.S. (often delegated)
- Much within-occupation variation in licensing across states
 \[\rightarrow \] Exploit variation across state–occupation cells as “diff-in-diff”
Preview of Results

- **Reduced form:** Effects of licensing on licensed occupation
 - Hourly wage: +15%
 - Hours per worker: +3% (= +1.4 hours per week)
 - Employment: -29%

- **Welfare effect:** Net loss of 12% of occupational surplus
 - Opportunity cost of licensing: 11% of lifetime PV labor income
 - Forced investment in occupation-specific human capital
 - Workers and consumers bear 70% and 30% of incidence
 - *Workers:* Higher wages offset about 60% of opportunity cost
 - *Consumers:* WTP increases offset about 80% higher prices
Related Literature

• **Theory**

 • Canonical models portray licensing as costly quality signal: Akerlof (1970), Leland (1979), Shapiro (1986)

 → Capture story of such models in an estimable framework

 → “PF” approach related to mandatory benefits lit (Summers 1989): Use sufficient statistics to evaluate welfare and incidence

• **Empirics**

 → Revisit welfare questions that sparked interest in licensing: Friedman & Kuznets (1945), Stigler (1971)
Roadmap

1. Model
2. Welfare and Incidence
3. Data and Identification
4. Reduced-Form Estimates
5. Structural Estimation
6. Conclusion
Roadmap

1 Model
2 Welfare and Incidence
3 Data and Identification
4 Reduced-Form Estimates
5 Structural Estimation
6 Conclusion
A state government licenses an occupation. Now what?

- Labor supply falls due to cost of mandatory training
- Labor demand rises due to higher WTP for occupational labor

In our model, 3 margins of response to licensing:

1. Consumer substitution
2. Intensive labor supply: weekly hours per worker
3. Extensive labor supply: occupation choice

In equilibrium:

- Consumption falls if WTP effect less than wage increase
- Employment falls if wage increase less than training cost
Model Setup

- Labor trading economy: no firms or industries
- Occupations \(j = 1, \ldots, M \)
- Workers \(i = 1, \ldots, N \) in occupations \(J_i \)
- Occ. preferences are i.i.d. Type I EV with dispersion \(\sigma > 0 \)
- Workers are ex-ante identical & differ ex-post only in preferences
- Numeraire good: index an arbitrary wage to \(w_0 = 1 \)

Two types of human capital: Years of schooling \(y_i \) and training \(\tau_j \)

- Workers choose \(y_i \) freely, but gov’t mandates \(\tau_j \) to enter \(j \)
- \(y_i \) raises individual productivity, but \(\tau_j \) operates collectively
 → Market failure: No credible individual signal of \(\tau_j \) investment
Worker Problem

\[
\max_{\{c_{ij}, h_i, y_i, J_i\}} \left\{ \log \left[\left(\sum_{j=1}^{M} q_j c_{ij}^{\frac{\varepsilon}{\varepsilon-1}} \right)^{\frac{\varepsilon}{\varepsilon-1}} \right] - \frac{\psi}{1 + \eta} h_i^{1+\eta} \right\} - \rho(y_i + \tau_{J_i}) + a_{iJ_i}
\]

s.t. \[\sum_{j=1}^{M} w_j c_{ij} \leq A_{J_i}(y_i) w_{J_i} h_i\]

where

- \(c_{ij}\): consumption of labor from occ. \(j\), traded at price \(w_j\)
- \(h_i\): hours of worker \(i\)
- \(y_i\): years of schooling (effective labor supply function \(A_{J_i}(y_i)\))
- \(a_{iJ_i}\): idiosyncratic preference of \(i\) for occupation \(J_i\)
- \(q_j\): WTP shifter for occupation \(j\)

→ nested structure: consumption, labor hours, schooling, occ. choice
Worker Problem

$$\max_{\{c_{ij}, h_i, y_i, J_i\}} \left\{ \log \left[\left(\sum_{j=1}^{M} q_j c_{ij} \right)^{\frac{\varepsilon-1}{\varepsilon}} \right] \frac{\varepsilon}{\varepsilon-1} - \frac{\psi}{1 + \eta} h_i^{1+\eta} \right] - \rho (y_i + \tau_{J_i}) + a_i J_i \right\}$$

s.t. $$\sum_{j=1}^{M} w_j c_{ij} \leq A_{J_i}(y_i) w_{J_i} h_i$$

where

- c_{ij}: consumption of labor from occ j, traded at price w_j
- h_i: hours of worker i
- y_i: years of schooling (effective labor supply function $A_{J_i}(y_i)$)
- a_{iJ_i}: idiosyncratic preference of i for occupation J_i
- q_j: WTP shifter for occupation j

→ nested structure: consumption, labor hours, schooling, occ. choice
Worker Problem

$$\max_{\{c_{ij}\}, h_i, y_i, J_i} \left\{ \log \left(\left(\sum_{j=1}^{M} q_j c_{ij}^{\frac{\varepsilon - 1}{\varepsilon}} \right)^{\frac{\varepsilon}{\varepsilon - 1}} - \frac{\psi}{1 + \eta} h_i^{1+\eta} \right) - \rho(y_i + \tau_{J_i}) + a_{iJ_i} \right\} \right. $$

\[\left. \text{s.t.} \quad \sum_{j=1}^{M} w_j c_{ij} \leq A_{J_i}(y_i) w_{J_i} h_i \right] $$

where

- c_{ij}: consumption of labor from occ j, traded at price w_j
- h_i: hours of worker i
- y_i: years of schooling (effective labor supply function $A_{J_i}(y_i)$)
- a_{iJ_i}: idiosyncratic preference of i for occupation J_i
- q_j: WTP shifter for occupation j

→ nested structure: consumption, labor hours, schooling, occ. choice
Worker Problem

\[
\max_{\{c_{ij}, h_i, y_i, J_i\}} \left\{ \log \left(\left(\sum_{j=1}^{M} q_j c_{ij}^{\frac{\epsilon-1}{\epsilon}} \right)^{\frac{\epsilon}{\epsilon-1}} - \frac{\psi}{1 + \eta} h_i^{1+\eta} \right) - \rho (y_i + \tau_{J_i}) + a_{iJ_i} \right\}
\]

s.t. \[\sum_{j=1}^{M} w_j c_{ij} \leq A_{J_i}(y_i) w_{J_i} h_i \]

where

- \(c_{ij} \): consumption of labor from occ. \(j \), traded at price \(w_j \)
- \(h_i \): hours of worker \(i \)
- \(y_i \): years of schooling (effective labor supply function \(A_{J_i}(y_i) \))
- \(a_{iJ_i} \): idiosyncratic preference of \(i \) for occupation \(J_i \)
- \(q_j \): WTP shifter for occupation \(j \)

→ nested structure: consumption, labor hours, schooling, occ. choice
Worker Problem

\[
\max_{\{c_{ij}, h_i, y_i, J_i\}} \left\{ \log \left(\left(\sum_{j=1}^{M} q_j \frac{c_{ij}}{c_{ij}}^{\frac{\varepsilon}{\varepsilon-1}} \right)^{\frac{\varepsilon}{\varepsilon-1}} - \frac{\psi}{1 + \eta} h_i^{1+\eta} \right) - \rho (y_i + \tau_{J_i}) + a_{iJ_i} \right\}
\]

s.t. \[\sum_{j=1}^{M} w_j c_{ij} \leq A_{J_i}(y_i) w_{J_i} h_i \]

where

- \(c_{ij} \): consumption of labor from occ \(j \), traded at price \(w_j \)
- \(h_i \): hours of worker \(i \)
- \(y_i \): years of schooling (effective labor supply function \(A_{J_i}(y_i) \))
- \(a_{iJ_i} \): idiosyncratic preference of \(i \) for occupation \(J_i \)
- \(q_j \): WTP shifter for occupation \(j \)

→ nested structure: consumption, labor hours, schooling, occ. choice
Worker Problem

\[
\begin{align*}
\text{max} \quad & \left\{ \log \left[\left(\sum_{j=1}^{M} q_j c_{ij} \right)^{\frac{\varepsilon}{\varepsilon-1}} \right] - \frac{\psi}{1 + \eta} h_i^{1+\eta} \right\} - \rho (y_i + \tau_{J_i}) + a_{iJ_i} \\
\text{s.t.} \quad & \sum_{j=1}^{M} w_j c_{ij} \leq A_{J_i}(y_i) w_{J_i} h_i
\end{align*}
\]

where

- \(c_{ij} \): consumption of labor from occ \(j \), traded at price \(w_j \)
- \(h_i \): hours of worker \(i \)
- \(y_i \): years of schooling (effective labor supply function \(A_{J_i}(y_i) \))
- \(a_{iJ_i} \): idiosyncratic preference of \(i \) for occupation \(J_i \)
- \(q_j \): WTP shifter for occupation \(j \)

\(\rightarrow \) nested structure: consumption, labor hours, schooling, occ. choice
Willingness to Pay

Two potential channels by which licensing may affect private WTP:

- Labor quality: Consumers value τ_j
- Selection on type: Licensing affects $E[a_{iJ_i}|J_i = j]$

Assume WTP function is log-linear in investment/selection effects:

\[
\log q_j = \kappa_0 + \kappa_1 \tau_j + \kappa_2 \log E[a_{iJ_i}|J_i = j]
\]

\[
\frac{\partial \log q_j}{\partial \tau_j} = \kappa_1 + \kappa_2 \frac{\partial \log E[a_{iJ_i}|J_i = j]}{\partial \tau_j}
\]

\[
= \kappa_1 + \frac{\kappa_2}{\sigma} \frac{\partial \log s_j}{\partial \tau_j} \equiv \alpha
\]

→ WTP effect collapses to a constant
Definition

Given parameters \(\{\sigma, \eta, \varepsilon, \psi, \kappa_1, \kappa_2\} \) and a policy \(\{\tau_j\} \), an equilibrium is defined by endogenous quantities \(\{\{J_i, h_i, y_i, \{c_{ij}\}_j\}_i, \{w_j, q_j\}_j\} \) such that:

1. **Workers optimize:** For all \(i \), occupation \(J_i \), hours \(h_i \), schooling years \(y_i \) and consumption \(\{c_{ij}\}_j \) solve workers’ problems.

2. **Market clearing:** Wages \(w_j \) are set so labor markets clear.

3. **Beliefs are confirmed:** For all \(j \), willingnesses to pay \(q_j \) are such that the WTP equation holds.
Comparative Statics (WTP effect $\alpha = 0$ case)

1. The occupation’s gross wage rises, but its net wage falls:
 \[
 \frac{\partial \log w_j}{\partial \tau_j} \in (0, \rho)
 \]

2. Workers exit the occupation:
 \[
 \frac{\partial \log s_j}{\partial \tau_j} < 0
 \]

3. Hours per worker in occupation rise:
 \[
 \frac{\partial \log h_{i:j_i=j}}{\partial \tau_j} > 0
 \]

General: $\alpha \neq 0$
When Licensing Affects WTP ($\alpha \neq 0$)

- If licensing raises WTP, licensing raises wages and hours more, offsets supply effect on employment shares:
 \[\frac{\partial^2 \log w_j}{\partial \tau_j \partial \alpha} > 0, \frac{\partial^2 \log h_{i:j_i=j}}{\partial \tau_j \partial \alpha} > 0, \frac{\partial^2 \log s_j}{\partial \tau_j \partial \alpha} > 0 \]

- There exists an $\bar{\alpha} < \infty$ such that, for all $\alpha \geq \bar{\alpha}$,
 \[\frac{\partial \log w_j}{\partial \tau_j} > \rho, \frac{\partial \log s_j}{\partial \tau_j} > 0 \]

→ With strong WTP effect, licensing lifts net wage and employment
Roadmap

1. Model
2. Welfare and Incidence
3. Data and Identification
4. Reduced-Form Estimates
5. Structural Estimation
6. Conclusion
Consumer welfare effect: Change in price level $P = \left(\sum_j q_j^\varepsilon w_j^{1-\varepsilon} \right)^{1\over 1-\varepsilon}$

$$\frac{\partial \log W^C}{\partial \tau_j} = - \frac{1 + \eta}{\eta} \frac{\partial \log P}{\partial \tau_j}$$

$$= \frac{1 + \eta}{\eta} s_j \frac{\partial \log w_j h_j}{\partial \tau_j}$$

→ Infer by revealed preference from wage bill (= consumption)

Worker welfare effect: Change in net wage of inframarginal workers

$$\frac{\partial \log W^L}{\partial \tau_j} = \frac{s_j}{\sigma} \frac{\partial \log s_j}{d \tau_j}$$

→ Infer by revealed preference from occupation choice
Effects of licensing on employment and wage bill are sufficient:

$$\tilde{W}_j = \frac{1}{\sigma} \frac{\partial \log s_j}{\partial \tau_j} + \frac{1 + \eta}{\eta(\varepsilon - 1)} \left(\frac{\partial \log w_j h_j}{\partial \tau_j} \right)$$

- True in any model w/ rep. agent, CRS prod’n, perfect competition

Licensing raises welfare if and only if:

$$\rho < \frac{1 + \eta}{\eta} \frac{\alpha \varepsilon}{\varepsilon - 1}$$

- Simple welfare economics of licensing: \(\rho \) and \(\alpha \)
- Compare WTP gain to social cost of training (Summers 1989)
Roadmap

1. Model
2. Welfare and Incidence
3. Data and Identification
4. Reduced-Form Estimates
5. Structural Estimation
6. Conclusion
Since January 2015, 3 questions on licensing/certification added to basic monthly U.S. Current Population Survey:

Q1 “Do you have a currently active professional certification or a state or industry license?”

Q2 “Were any of your certifications or licenses issued by the federal, state, or local government?”

Q3 “Is your certification or license required for your job?”

- Following BLS, we define licensed as yes to Q1 and Q2: holding an active certification or license that is state-issued
- Requiring yes to Q3 leads to counterfactually low licensing rates
Data: Licensing

- By this definition: **22.6%** of workers age 16–64 are licensed
- Use 48 months of basic monthly CPS (Jan ‘15 – Dec ‘18):
 - Workers \(N = 624,697 \)
 - 50 states x 483 occupations \(\approx 22,580 \) state–occ cells
- **Policy proxy:** leave-out state–occ licensed share w/ shrinkage
 \[
 \%\text{License}_i = \frac{\widehat{\alpha}_o + \sum_{i' \in W_{os}: i' \neq i} \text{License}_{i'}}{\widehat{\alpha}_o + \widehat{\beta}_o + N_{os} - 1}
 \]
 → empirical Bayes approach for \(\widehat{\alpha}_o \) and \(\widehat{\beta}_o \): beta–binomial model parameters, estimated by method of moments for each occupation
- Imperfect correspondence of licensing regs & Census occs
 → values of licensed share between 0 and 1
Empirical Specification

We regress a worker outcome y_i on the leave-i-out licensed share:

$$y_i = \alpha_o + \alpha_s + \beta \cdot \% \text{Licensed}_i + X_i'\gamma + u_i$$

- α_o, α_s: state & occupation FE \rightarrow two-way design
 - Example: MA versus CT, o_1 versus o_2: $(y_{o_1}^{MA} - y_{o_2}^{MA}) - (y_{o_1}^{CT} - y_{o_2}^{CT})$
- X_i: Controls to rule out some basic confounds
 - Cells for predetermined demographic traits (age bin, sex, race, . . .)
 - Industry FE, survey month–year FE
What Are the Marginally Licensed Occupations?

ANOVA: 90% occupation, <1% state, 10% residual (SD = 7.1 p.p.)

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Code</th>
<th>Employment</th>
<th>% Licensed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brokerage clerks</td>
<td>5200</td>
<td>4,000</td>
<td>40.0</td>
</tr>
<tr>
<td>Dispensing opticians</td>
<td>3520</td>
<td>47,000</td>
<td>30.8</td>
</tr>
<tr>
<td>Elevator installers</td>
<td>6700</td>
<td>31,000</td>
<td>41.4</td>
</tr>
<tr>
<td>Electricians</td>
<td>6355</td>
<td>770,000</td>
<td>43.9</td>
</tr>
<tr>
<td>Lawyers</td>
<td>2100</td>
<td>1,030,000</td>
<td>82.8</td>
</tr>
<tr>
<td>Registered nurses</td>
<td>3255</td>
<td>2,900,000</td>
<td>83.2</td>
</tr>
<tr>
<td>Economists</td>
<td>1800</td>
<td>29,000</td>
<td>1.6</td>
</tr>
<tr>
<td>Cashiers</td>
<td>4720</td>
<td>3,000,000</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Regression Weights (De Chaisemartin and D'Haultfoeuille 2019)
Assumption:
Two-way policy diffs unrelated to two-way diffs in potential outcomes

\[
[u_{o1,s1} - u_{o2,s1} - u_{o1,s2} + u_{o2,s2}] \\
\parallel \\
[\%L_{o1,s1} - \%L_{o2,s1} - \%L_{o1,s2} + \%L_{o2,s2}]
\]

Potential concerns and how we address them:

1. Other labor regulations and institutions (Besley Case 2000)
 - State–occ certification and union rate controls
 - Predict employment from state occupation mix and demography
 - Add FE for state × occ group, Census division × occ

2. Selection into licensed occupations? Finkelstein et al. (2019)
 - Assume equal intensity of selection on HH and individual unobs.

3. True policy variation? Use only large diffs in licensing rates
Roadmap

1. Model
2. Welfare and Incidence
3. Data and Identification
4. Reduced-Form Estimates
5. Structural Estimation
6. Conclusion
Result 1: Licensing’s Investment Requirement Binds

<table>
<thead>
<tr>
<th></th>
<th>Licensed = 1</th>
<th>% Licensed in Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>DV: Years of Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Licensed</td>
<td>0.383***</td>
<td>0.418***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>Workers</td>
<td>514,290</td>
<td>514,290</td>
</tr>
<tr>
<td>State–Occ. Cells</td>
<td>20,321</td>
<td>20,321</td>
</tr>
<tr>
<td>Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

- Masks changes in occupational specificity of human capital
- Understates induced investment if some training unmeasured
Licensing usually requires associate’s, master’s, etc., not HS/BA
Result 1: Licensing’s Investment Requirement Binds

\[\mathbb{E}[\text{Emp}_{os,a} | \%\text{Licensed}_{os}] = \exp(\alpha_{o,a} + \alpha_{s,a} + \beta_a \cdot \%\text{Licensed}_{os}) \]

Licensing delays occupational entry by about 1.4 years
Result 2: Licensing Raises Wages

<table>
<thead>
<tr>
<th>Licensed = 1</th>
<th>% Licensed in Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>0.154***</td>
<td>0.226***</td>
</tr>
<tr>
<td>(0.005)</td>
<td>(0.026)</td>
</tr>
</tbody>
</table>

- Workers: 289,291
- State–Occ. Cells: 20,273
- Fixed Effects: Yes
- Controls: Yes

DV: Log Hourly Wage
Result 3: Licensing Raises Hours

DV: Log Hours Per Week

<table>
<thead>
<tr>
<th></th>
<th>Licensed = 1</th>
<th>% Licensed in Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Workers</td>
<td>514,290</td>
<td>514,290</td>
</tr>
<tr>
<td>State–Occ. Cells</td>
<td>20,321</td>
<td>20,321</td>
</tr>
<tr>
<td>Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

\[\frac{\text{ratio of wage effect to hours effect}}{\eta} = 0.21 \]

> ratio of wage effect to hours effect implies sensible \(\frac{1}{\eta} = 0.21 \)
Result 4: Licensing Reduces Employment

<table>
<thead>
<tr>
<th>% Licensed in Cell</th>
<th>OLS (Log Count)</th>
<th>Poisson (Count)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>-0.294***</td>
<td>-0.268***</td>
<td></td>
</tr>
<tr>
<td>(0.065)</td>
<td>(0.061)</td>
<td></td>
</tr>
</tbody>
</table>

| State–Occ. Cells | 20,321 | 20,321 |
| Fixed Effects | Yes | Yes |
Welfare Analysis Without Structural Estimation

Worker welfare: Employment decline implies $\Delta \mathcal{W}^L < 0$

- Magnitude of worker welfare change scaled by σ

Consumer welfare: Wage bill decline implies $\Delta \mathcal{W}^C < 0$

- $\hat{\Delta}w_j + \hat{\Delta}h_{i:j} + \hat{\Delta}s_j = 0.149 + 0.032 - 0.294 = -0.113$ (SE = 0.123)
- Magnitude of consumer welfare change scaled by ε

What can we learn from structural estimation?

- Decompose LD and LS shifts
- Assess reasonableness of implied structural parameters
- Estimate other quantities of interest (e.g., license cost)
Roadmap

1. Model
2. Welfare and Incidence
3. Data and Identification
4. Reduced-Form Estimates
5. Structural Estimation
6. Conclusion
Structural Estimation: Setup

Goal: Recover structural parameters θ from moments $\hat{\beta}$ and calibrated parameters (occ. preference dispersion σ, consumption elasticity ε).

Approach: Use classical minimum distance estimator

$$\hat{\theta} = \arg\min_{\theta} \left\{ \left[\hat{\beta} - m(\theta) \right]^T \hat{V}^{-1} \left[\hat{\beta} - m(\theta) \right] \right\} ,$$

Estimation: Use comparative statics $m(\theta)$ and our 4 main estimates

- $\hat{\beta}$: Log wage
- $\hat{h}_{i:j=\text{_}}$: Log hours per worker
- \hat{s}_{j}: Log employment
- \hat{a}_{i}: Years of age
- α: WTP effect
- ρ: Return on education
- $1/\eta$: Frisch LS elasticity
- $\bar{\tau}$: Years of training
Structural Estimation: Calibration

- Occupational preference dispersion $\sigma \in \{2, 3, 4\}$
 - Hsieh et al 2018: 2.0 (high-level occupation categories)
 - Cortes & Gallipoli 2014: 3.23 (2-digit Census occ codes)

- Occupational labor demand elasticity $\varepsilon \in \{2, 3, 4\}$
 - Autor et al 1998: 1.5 (skilled–unskilled labor substitution)
 - Kline & Moretti 2014: 1.5 (local labor demand)
 - Hamermesh 1993: Surveys occupation-specific estimates

- Adjust ρ for occupation/state transition rate of 11.2 percent
Structural Estimates of Model Parameters

<table>
<thead>
<tr>
<th></th>
<th>Baseline (1)</th>
<th>Low σ (2)</th>
<th>High σ (3)</th>
<th>Low ε (4)</th>
<th>High ε (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occ. Pref. Dispersion (σ)</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Demand Elasticity (ε)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Estimated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTP Effect (α)</td>
<td>0.061*</td>
<td>0.061*</td>
<td>0.061*</td>
<td>0.035</td>
<td>0.074**</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.032)</td>
<td>(0.032)</td>
<td>(0.031)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>Return to Schooling ($\tilde{\rho}$)</td>
<td>0.084</td>
<td>0.114</td>
<td>0.069</td>
<td>0.084</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
<td>(0.085)</td>
<td>(0.068)</td>
<td>(0.074)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>Intensive Margin Elasticity ($1/\eta$)</td>
<td>0.199**</td>
<td>0.199**</td>
<td>0.199**</td>
<td>0.199**</td>
<td>0.199**</td>
</tr>
<tr>
<td></td>
<td>(0.081)</td>
<td>(0.081)</td>
<td>(0.081)</td>
<td>(0.081)</td>
<td>(0.081)</td>
</tr>
<tr>
<td>Licensing Cost in Years ($\bar{\tau}$)</td>
<td>1.350***</td>
<td>1.350***</td>
<td>1.350***</td>
<td>1.350***</td>
<td>1.350***</td>
</tr>
<tr>
<td></td>
<td>(0.478)</td>
<td>(0.478)</td>
<td>(0.478)</td>
<td>(0.478)</td>
<td>(0.478)</td>
</tr>
</tbody>
</table>
Structural Estimates of Welfare Effects of Licensing

<table>
<thead>
<tr>
<th></th>
<th>Baseline (1)</th>
<th>Low σ (2)</th>
<th>High σ (3)</th>
<th>Low ε (4)</th>
<th>High ε (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occ. Pref. Dispersion (σ)</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Demand Elasticity (ε)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Welfare Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>-0.081***</td>
<td>-0.121***</td>
<td>-0.061***</td>
<td>-0.081***</td>
<td>-0.081***</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.028)</td>
<td>(0.014)</td>
<td>(0.018)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Consumer</td>
<td>-0.035</td>
<td>-0.035</td>
<td>-0.035</td>
<td>-0.070</td>
<td>-0.023</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.038)</td>
<td>(0.038)</td>
<td>(0.076)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Social</td>
<td>-0.116**</td>
<td>-0.157**</td>
<td>-0.096*</td>
<td>-0.151</td>
<td>-0.104**</td>
</tr>
<tr>
<td></td>
<td>(0.055)</td>
<td>(0.064)</td>
<td>(0.051)</td>
<td>(0.093)</td>
<td>(0.043)</td>
</tr>
</tbody>
</table>

- Licensing appears to reduce worker & consumer welfare
- Imprecise estimates on consumer side (hard to sign wage bill effect)
Structural Estimates of Licensing Incidence

<table>
<thead>
<tr>
<th></th>
<th>Baseline (1)</th>
<th>Low σ (2)</th>
<th>High σ (3)</th>
<th>Low ε (4)</th>
<th>High ε (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occ. Pref. Dispersion (σ)</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Demand Elasticity (ε)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Incidence Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker Share (γ^L)</td>
<td>0.697***</td>
<td>0.775***</td>
<td>0.633***</td>
<td>0.535**</td>
<td>0.775***</td>
</tr>
<tr>
<td></td>
<td>(0.185)</td>
<td>(0.153)</td>
<td>(0.203)</td>
<td>(0.218)</td>
<td>(0.153)</td>
</tr>
<tr>
<td>Cost as Share of Income ($\bar{\ell}$)</td>
<td>0.113*</td>
<td>0.154**</td>
<td>0.093</td>
<td>0.113*</td>
<td>0.113*</td>
</tr>
<tr>
<td></td>
<td>(0.062)</td>
<td>(0.065)</td>
<td>(0.061)</td>
<td>(0.062)</td>
<td>(0.062)</td>
</tr>
<tr>
<td>Share of Cost Offset</td>
<td>0.579***</td>
<td>0.503***</td>
<td>0.627***</td>
<td>0.579***</td>
<td>0.579***</td>
</tr>
<tr>
<td></td>
<td>(0.061)</td>
<td>(0.063)</td>
<td>(0.058)</td>
<td>(0.061)</td>
<td>(0.061)</td>
</tr>
<tr>
<td>WTP-Adj. Price Change</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
<td>0.059</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.032)</td>
<td>(0.032)</td>
<td>(0.063)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Share of Price Change Offset</td>
<td>0.809***</td>
<td>0.809***</td>
<td>0.809***</td>
<td>0.618</td>
<td>0.873***</td>
</tr>
<tr>
<td></td>
<td>(0.221)</td>
<td>(0.221)</td>
<td>(0.221)</td>
<td>(0.441)</td>
<td>(0.147)</td>
</tr>
</tbody>
</table>
Roadmap

1. Model
2. Welfare and Incidence
3. Data and Identification
4. Reduced-Form Estimates
5. Structural Estimation
6. Conclusion
Conclusion

1 Marginal net welfare impact of occupational licensing is negative
 - Welfare cost of supply restriction > welfare gain from higher WTP
 - Neither workers nor consumers fully compensated

2 Two potentially compelling theoretical arguments for licensing:
 - Missing technology: Workers lack credible quality signal
 → Classic story: underinvestment in quality, excess entry
 - We evaluate this argument: Consumers insufficiently value signal
 - Remains plausible for inframarginal occupations: surgeons?
 - Externalities: Positive marginal social WTP for quality
 → Return on human capital is inefficiently low, even w/ full information
 - We do not evaluate this argument: Assumed social WTP = 0
 - Plausible for some occupations: demolition engineers?
Appendix
Occupational license: “a credential awarded by a government agency that constitutes legal authority to do a specific job”

– U.S. definition (GEMEnA)

- Not:
 - certification (mandatory, not voluntary)
 - business license (worker/occupation, not firm/industry)

- Labor market institution covering 1 in 5 U.S. workers

- Examples of licensed occupations in the U.S.:
 - lawyer
 - truck driver
 - physician assistant
 - dentist
 - school teacher
 - barber
Step 1: Labor Demand (Consumption)

Worker i’s demand for j:

$$c_{ij} = \left(\frac{w_j}{Pq_j} \right)^{-\varepsilon} \frac{A_j(y_j^*)w_j h_i^*}{P}$$

Demand for j:

$$c_j = \sum_i c_{ij} = N \left(\frac{w_j}{q_j} \right)^{-\varepsilon} \sum_j s_j A_j(y_j^*)w_j h_i^* \frac{1}{P^{1-\varepsilon}}$$

Response of demand for j to licensing j:

$$\frac{\partial \log c_j}{\partial \tau_j} = \varepsilon \left(\alpha - \frac{\partial \log w_j}{\partial \tau_j} \right)$$

Key parameters: Substitution elasticity ε and WTP effect α
Step 2: Labor Supply (Hours)

Hours per worker: Equalizes wage and marginal disutility of labor

\[h_i = \psi^{-1/\eta} w_{J_i}^{1/\eta} \quad \rightarrow \quad \frac{\partial \log h_{i:j_i=j}}{\partial \tau_j} = \frac{1}{\eta} \frac{\partial \log w_j}{\partial \tau_j} \]

Key parameters: Preference dispersion \(\sigma \), intensive LS elasticity \(\eta \)
Step 3: Schooling

Years of schooling: Choices reflect productivity gain vs. delay cost

\[\rho = \exp \left(\frac{1 + \eta}{\eta} \cdot \frac{A'_{J_i}(y_i^*)}{A_{J_i}(y_i^*)} \right) - 1 \]

Schooling is outside option \(\rightarrow \rho \) is required return on training time \(\tau_j \)

Cost of licensing as a share of lifetime income:

\[\ell_j = \rho \tau_j \]
Step 4: Labor Supply (Occupation)

Hours per worker: Equalizes wage and marginal disutility of labor

\[h_i = \psi^{-1/\eta} w_{J_i}^{1/\eta} \rightarrow \frac{\partial \log h_i \mid J_i=j}{\partial \tau_j} = \frac{1}{\eta} \frac{\partial \log w_j}{\partial \tau_j} \]

Employment share: Workers choose occupations with max utility

\[s_j = \frac{e^{-\rho \sigma (y_j^* + \tau_j)} \left(A_j(y_j^*) w_j \right)^{\sigma (1+\eta)/\eta}}{\sum_{j'} e^{-\rho \sigma (y_{j'}^* + \tau_{j'})} \left(A_{j'}(y_{j'}^*) w_{j'} \right)^{\sigma (1+\eta)/\eta}} \rightarrow \frac{\partial \log s_j}{\partial \tau_j} = \sigma \left(\frac{1 + \eta}{\eta} \frac{\partial \log w_j}{\partial \tau_j} - \rho \right) \]

Supply: Sum of intensive + extensive margins

\[h_j = \sum_{i:J_i=j} h_i \rightarrow \frac{\partial \log h_j}{d\tau_j} = \frac{\partial \log h_i \mid J_i=j}{d\tau_j} + \frac{\partial \log s_j}{d\tau_j} \]

Key parameters: Preference dispersion \(\sigma \), intensive LS elasticity \(\eta \)
Comparative Statics (WTP effect $\alpha \neq 0$ case)

1. The occupation’s gross wage rises, but its net wage change is ambiguous:

$$\frac{\partial \log w_j}{\partial \tau_j} = \frac{\alpha \eta \varepsilon + \rho \sigma \eta}{1 + \sigma(1 + \eta) + \eta \varepsilon} > 0, \quad \geq \rho$$

2. The number of workers in the occupation may rise or fall:

$$\frac{\partial \log s_j}{\partial \tau_j} = \frac{\alpha \varepsilon \sigma (1 + \eta) - \rho \sigma (1 + \eta \varepsilon)}{1 + \sigma(1 + \eta) + \eta \varepsilon} \geq 0$$

3. Hours per worker in occupation rise:

$$\frac{\partial \log h_{i:j_i=j}}{\partial \tau_j} = \frac{\alpha \varepsilon + \rho \sigma}{1 + \sigma(1 + \eta) + \eta \varepsilon} > 0$$
Method of Moments for Beta–Binomial Model

Beta–binomial model of licensed share in occupation \(o \) and state \(s \):

\[p_o \sim \text{Beta}(\alpha_o, \beta_o) \]

\[L_{os} \sim \text{Binom}(N_{os}, p_o). \]

Moments of beta distribution:

\[\mu_{1o} = \mathbb{E}[p_o] = \frac{\alpha_o}{\alpha_o + \beta_o} \]

\[\mu_{2o} = \mathbb{E}[p_o^2] = \frac{\alpha_o \beta_o}{(\alpha_o + \beta_o)(\alpha_o + \beta_o + 1)} \]

Invert moment formulae for distribution parameters:

\[\hat{\alpha}_o = \frac{\mu_{1o}^2 - \mu_{1o}^3 - \mu_{1o} \mu_{2o}}{\mu_{2o}} \]

\[\hat{\beta}_o = -\frac{\mu_{1o}^2 - \mu_{1o}^3 - \mu_{1o} \mu_{2o}}{\mu_{1o}^2 - \mu_{1o}^3 - 2\mu_{1o} \mu_{2o}} \]
Method of Moments for Beta–Binomial Model

• How much sampling error in state–occupation licensed shares?

\[
\sigma_{u_i} = \sqrt{\frac{(\hat{\alpha}_o + \sum_{i' \in W_{os}, i' \neq i} \text{License}_{i})(\hat{\beta}_o + N_{os} - 1 - \sum_{i' \in W_{os}, i' \neq i} \text{License}_{i})}{(\hat{\alpha}_o + \hat{\beta}_o + N_{os} - 1)^2(\hat{\alpha}_o + \hat{\beta}_o + N_{os})}}
\]

→ Not much at all:

• Median worker in cell w/ \(\sigma_{u_i} \) of 1.7 p.p. (95th pctile = 4.7 p.p.)

• Attenuation bias \(\approx 7\% \) (will present estimates uncorrected for EIV)
Licensed share of workers:

- 32 “universally licensed” occs. (Gittleman et al 2018): 66.2%
- 451 other occupations: 13.2%

Why so many intermediate values?

- Misalignment of occupation definitions
- License held for other (non-primary) occupation
- Survey misresponse (e.g., 33% of LPNs say they are unlicensed)
Is Self-Reported Licensing Status Reliable?
Can interpret our estimator of effect of licensing as average of heterogenous treatment effects Δ_{os} of licensing occupation o in state s

$$\beta = \sum_{o,s} \omega_{os} \Delta_{os}$$

where

$$\Delta_{os} = E[y_i(1) - y_i(0)| i \in W_{o,s}: L = 1]$$

$$\omega_{os} = \frac{\lambda_{os} \%L_{os}(\%L_{os} - \%L - \%L_s + \%L)}{\sum_{os} \lambda_{os} \%L_{os}(\%L_{os} - \%L - \%L_s + \%L)}$$

- De Chaisemartin & D’Haultfoeuille 2019: ω_{os} sometimes $\not\in [0, 1]$!
- Our application: $\sum_{s} \omega_{os} \in [0, 1]$ for all o

→ Interpret as convex combination of occupation-level TEs, but require homogeneity assumption on TEs within-occupation
Top 10 Regression Weighted Occupations

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Code</th>
<th>Treat. Eff. Weight</th>
<th>Workers Per 10,000</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Most Influential Occupations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricians</td>
<td>6355</td>
<td>0.0414</td>
<td>61.3</td>
<td>6.74</td>
</tr>
<tr>
<td>Nursing, psychiatric, and home health aides</td>
<td>3600</td>
<td>0.0282</td>
<td>146.2</td>
<td>1.93</td>
</tr>
<tr>
<td>Patrol officers</td>
<td>3850</td>
<td>0.0243</td>
<td>53.4</td>
<td>4.55</td>
</tr>
<tr>
<td>Pipelayers, plumbers, etc.</td>
<td>6440</td>
<td>0.0214</td>
<td>44.4</td>
<td>4.82</td>
</tr>
<tr>
<td>Teacher assistants</td>
<td>2540</td>
<td>0.0179</td>
<td>70.9</td>
<td>2.52</td>
</tr>
<tr>
<td>Construction managers</td>
<td>0220</td>
<td>0.0169</td>
<td>65.4</td>
<td>2.59</td>
</tr>
<tr>
<td>Social workers</td>
<td>2010</td>
<td>0.0151</td>
<td>58.1</td>
<td>2.60</td>
</tr>
<tr>
<td>Personal and home care aides</td>
<td>4610</td>
<td>0.0150</td>
<td>93.2</td>
<td>1.61</td>
</tr>
<tr>
<td>Dental assistants</td>
<td>3640</td>
<td>0.0143</td>
<td>22.1</td>
<td>6.48</td>
</tr>
<tr>
<td>Automotive service technicians and mechanics</td>
<td>7200</td>
<td>0.0137</td>
<td>67.1</td>
<td>2.04</td>
</tr>
<tr>
<td>Panel B: Most Overweighted Occupations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brokerage clerks</td>
<td>5200</td>
<td>0.0014</td>
<td>0.3</td>
<td>42.63</td>
</tr>
<tr>
<td>Emergency management directors</td>
<td>0425</td>
<td>0.0030</td>
<td>0.7</td>
<td>40.66</td>
</tr>
<tr>
<td>Aircraft assemblers</td>
<td>7710</td>
<td>0.0013</td>
<td>0.5</td>
<td>27.16</td>
</tr>
<tr>
<td>Fire inspectors</td>
<td>3750</td>
<td>0.0046</td>
<td>1.7</td>
<td>26.94</td>
</tr>
<tr>
<td>Opticians, dispensing</td>
<td>3520</td>
<td>0.0098</td>
<td>3.7</td>
<td>26.10</td>
</tr>
<tr>
<td>Explosives workers</td>
<td>6830</td>
<td>0.0018</td>
<td>0.7</td>
<td>25.74</td>
</tr>
<tr>
<td>Manufactured building and home installers</td>
<td>7550</td>
<td>0.0013</td>
<td>0.5</td>
<td>24.91</td>
</tr>
<tr>
<td>Funeral service workers</td>
<td>4460</td>
<td>0.0017</td>
<td>0.7</td>
<td>24.85</td>
</tr>
<tr>
<td>Ambulance drivers and attendants, ex. EMTs</td>
<td>9110</td>
<td>0.0025</td>
<td>1.0</td>
<td>24.50</td>
</tr>
<tr>
<td>Septic tank servicers and sewer pipe cleaners</td>
<td>6750</td>
<td>0.0019</td>
<td>0.8</td>
<td>24.32</td>
</tr>
</tbody>
</table>
Robustness: Labor Supply/Demand Confounds?

Predicted labor supply: By demographic cell k:

$$\hat{N}_{os}^S = \sum_k \frac{N_{ok} - N_{osk}}{N_k - N_{sk}} N_{sk} = \tilde{s}_{ok}$$

Predicted labor demand:

1. Let M be a state–occ matrix of employment shares. Define also submatrix $M_{-o^*, -s^*}$, which deletes column o^* and row s^*.
2. Take first k principal components of $M_{-o^*, -s^*}$. Use PC rotation to predict PC scores for all occupations but o^* in the hold-out state s. Augment the matrix of PC scores with these predicted scores; call it $P_{-o^*} = [p_{ks}]$.
3. Using P_{-o^*}, estimate regression for a fixed occ o^* in states s:

$$s_{o^*s} = \sum_k \beta^k p_{ks} + e_s.$$

4. For hold-out observation (o^*, s^*), predict $\hat{s}_{o^*s^*} = \sum_k \hat{\beta}^k p_{ks^*}$.
5. Repeat for all (o, s). Write as \hat{N}_{os}^D.

Back
Constructive Identification of Structural Parameters

\[
\begin{bmatrix}
\hat{w}_j \\
\hat{h}_i \\
\hat{s}_j \\
\hat{a}_i
\end{bmatrix}
= \frac{\bar{\tau} \cdot \%\text{Licensed}_j}{1 + \sigma(1 + \eta) + \eta \varepsilon}
\begin{bmatrix}
\rho \sigma (1 + \eta) + \alpha \eta \varepsilon \\
\rho \sigma (1 + \eta)/\eta + \alpha \varepsilon \\
\sigma (1 + \eta)(\alpha \varepsilon - \rho(\varepsilon + 1/\eta)) \\
1 + \sigma(1 + \eta) + \eta \varepsilon
\end{bmatrix}
\]

\[
\eta = \frac{\hat{w}_j}{\hat{h}_i}
\]

\[
\bar{\tau} = \hat{a}_i
\]

\[
\alpha = \frac{\hat{w}_j + 1}{\varepsilon}(\hat{s}_j + \hat{h}_i)
\]

\[
\rho = \hat{w}_j - \frac{\hat{w}_j \hat{s}_j}{\sigma(\hat{w}_j + \hat{h}_j)}
\]
Reference Points for Estimated Parameters

- Return on education $\rho \in [0.05, 0.20]$
 - Card 1999, Heckman et al 2018 (surveys of literature)
 - Adjusted for transition rate: 11.2% of licensed workers switch occ or state annually

- Intensive margin labor supply elasticity $1/\eta$
 - Chetty 2012: 0.33 (survey of literature)

- Training time $\bar{\tau}$
 - Carpenter et al 2017: 0.98 years (102 lower-income occupations)